Zinc-Catalyzed Enantiospecific sp³-sp³ Cross-Coupling of α-Hydroxy Ester Triflates with Grignard Reagents

Christopher Studte and Bernhard Breit *Angew. Chem. Int. Ed.* **2008**, Early View

Nate Ware Current Literature 6/28/08

Examples of Cross-Coupling Reactions with Secondary Electrophiles

Martin and Fürstner. *Angew. Chem. Int. Ed.* **2004**, *43*, 3955 Castle and Widdowson. *Tetrahedron Lett.* **1986**, *27*, 6013 Terao et al. *J. Am. Chem. Soc.* **2002**, *124*, 4222

Racemic Bromides as a Prochiral Alkyl-Alkyl Cross-Coupling Partners

Ficher and Fu. *J. Am. Chem. Soc.* **2005**, *127*, 4594 Dai et al. *J. Am. Chem. Soc.* **2008**, *130*, 3302 Saito and Fu. *J. Am. Chem. Soc.* **2008**, *127*, 6694

Stereoselective sp³-sp³ Cross-Couplings Using Copper Reagents

Petit et al. *Tetrahedron Lett.* **1990**, *31*, 2149 Hanessian et al. *J. Org. Chem.* **1989**, *54*, 5831 Malosh and Ready. *J. Am. Chem. Soc.* **2004**, *126*, 10240

Previous Work Using sp³-sp³ Cross-Couplings in the Breit Group

Heber and Breit. *Angew. Chem. Int. Ed.* **2005**, *44*, 5267 Heber and Breit. *Eur. J. Org. Chem.* **2007**, 3512 Advantages of a Direct Alkyl Coupling of α -Substituted Esters.

Easily obtained starting materials from the chiral pool, enzymatic construction of chiral cyanohydrins, or from α -amino acids.

Can avoid chiral auxiliaries on sterically congested molecules.

Effengerger *Angew. Chem. Int. Ed.* **1994**, 33, 1555 (Rev.) Deechongkit et al. *Org. Lett.* **2004**, *6*, 497

Title Paper Determination of Transition Metal Catalyst

Entry	Cat. MX_n	n-Bu-M	2a [%]	Conv. [%]
1		<i>n</i> -BuMgCl	46	62
2	$[Fe(acac)_3]$	<i>n</i> -BuMgCl	0	>99
3	Li ₂ CuCl ₄	<i>n</i> -BuMgCl	56	>99
4	$ZnCl_2$	<i>n</i> -BuMgCl	>99	>99
5	$ZnCl_2$	<i>n</i> -BuMgBr	11	>99
6	$ZnCl_2$	<i>n</i> -BuLi	0	>99

Reaction Scope for the Grignard Reagent

Entry	R	Product	Yield [%]	ee [%]	CT [%]
1	Et	(+)-2b	>99	>99	100
2	<i>i</i> -Pr	(+)-2c	98	>99	100
3	n-Bu	(+)-2a	>99	>99	100
4	i-Bu	(+)-2d	>99	>99	100
5	s-Bu	(+)-2e	96	>99	100
6	Су	(+)-2f	90	>99	100
7	Oct	(+)-2g	>99	>99	100
8	lauryl	(+)-2h	>99	>99	100
9	Bn	(+)-2i	>99	>99	100
10	Ot-Bu	(+)-2j	94	>99	100
11	$\sim \sim$	(+)-2k	>99	>99	100

Entry	R	Product	R	ZnCl ₂ [mol%]	Yield [%]	ee [%]		
1	0	0	Me	20	92	99		
2	t-BuO		Et	5	>99	99		
3	ŌTf	t-BuO	i-Pr	15	88	99		
	>99% ee							
4	O II	Q	Me	20	81	>99		
5	t-BuO	t-Bu0	Et	10	>99	>99		
6	OTf ¹		i-Pr	15	79	>99		
-	>99% ee			2.0	70	0.0		
1	Ŭ ^ ^	O II	Me	20	72	98		
8	t-BuO	t-BuO	Et	5	>99	98		
9	OTf 🤟	R L	i-Pr	20	84	98		
10	98% ee	-	Ма	50	76	> 0 0		
10	, , , , , , , , , , , , , , , , , , ,	O I		50 15	/0	>99		
11	t-BuO' V	t-BuO	Et	15	>99	>99		
12	VII >99% ee	Ř	n-Bu	20	>99	>99		
13	0	-	Me	50	73	99		
14	t-Buo		Et	20	>99	99		
15	ŌTf	t-BuO	n-Ru	20	>99	99		
15	99% de, >99% ee	R	II-Du	20	~))))		
16	0 I	0	Et	20	95	97		
	t-BuO	Ŭ ,						
	ŌTf	t-BuO YOBn						
	97% ee	R						
17	0	0	Me	20	74	>99		
	t-BuO	, Ŭ Ot-Bu	1					
	ŌTf Ö	t-BuO' T T						
	>99% ee	ΠŪ						

Reaction Scope for the Side Chain

Conclusions

- The first zinc-catalyzed enantiospecific coupling reaction of sp³ hybridized carbons was developed and was used to produce α-substituted esters from readily available starting materials.
- Provides an alternative approach to this motif from enolate alkylations.